Maternal Programming of Body Weight in Syrian Hamsters

Integrative and Comparative Biology

Brozek_BehvaiorTests_20150629_160137 Food hoarding and intake are monitored using individual ‘borrows’ consisting of a home cage with tunnels running up a food source in 90 min tests. (Copyright © Jeremy M. Brozek)


Maternal programming of offspring energy balance has been viewed as an adaptation in which the gestational environment prepares the offspring to thrive and reproduce in that same postnatal environment. Programming might have the opposite effect, however, when gestational and postnatal environments are mismatched. Gestational programming would represent a trade-off if the mother can maximize fitness in one possible energetic future but cannot maximize fitness in another. The vast majority of research concerns rats, mice, or sheep, and dams are typically food restricted by 30–70% of ad libitum intake resulting in low birth weight and adult obesity in offspring. Few previous studies have used a lower level of food restriction, and no experiments, to the best of our knowledge, were designed to…

View original post 676 more words

1 Comment

Filed under Uncategorized

A-well, a bird, bird, bird, bird is a word

birthday greetingsRebecca Calisi produced a must-see video (below) explaining the importance of bird research for understanding the brain. Please share it widely, because despite the obvious importance of bird research, there are still many who don’t get it, and  misunderstandings and assumptions about bird researchers are rampant. As you will see, the video is geared toward those who are completely in the dark about bird research and those who conduct bird research.

We share so much in common with birds (ahem, evolution), and so our understanding of the brain, and especially hormone-brain interactions, has been shaped by bird biologists. Here are just a few examples…

  1. The first evidence for hormone effects on brain and behavior were performed by Berthold in the 1800s; he studied roosters. He didn’t call the secretions hormones, but his work marks the beginning of endocrinology (the study of hormones, like those that control puberty, sexual desire, and the hormones in oral contraceptives and cancer treatments) and neuroendocrinology (the study of how hormones affect the brain and nerves in the body).
  2. In the 1920’s Rowan discovered that day length (number of hours of light in a day) stimulates the reproductive hormones and behavior in dark-eyed juncos. This work initiated the field of seasonal biology and the effects of light and dark on mood, learning, depression, reproduction, and adaptation to seasons.
  3. In the 1960’s Hinde and Lehrman opened an entire field of research based on their evidence that hormone-behavior relations are reciprocal, that is, hormones affect behavior, but changes in behavior affect hormone secretion. This research was on ring doves and canaries, and lead to the study of how our behavior and cues from our peers influences our own internal secretions (such as testosterone, serotonin, and dopamine).
  4. Nottebohm and Konishi and their academic offspring made pivotal contributions to understanding how changes in brain cells (neurons) allow birds to learn songs of their own species, songs that they use to hold territories and compete for mating partners. This work with song birds is key to understanding how the brain learns and changes with experience including experiences with our sexual partners, experiences with stress and trauma (PTSD), and experiences with nurturing kindness from our caregivers.
  5. Schlinger and Brenowitz discovered that rapid changes in the brain and behavior involved the enzyme, aromatase, in specific parts of the brain. This work with zebra finches and other species, is important for understanding the underlying cellular mechanisms involved when hormones have rapid effects on behavior, and when the behaviors of one individual affect the behaviors of another. It’s also important for understanding how brain cells survive trauma.

Again, these are just a few examples of why bird is the word.


Filed under Oldies, rock, Uncategorized

Ain’t Wastin’ Time No More! NSF Drops the Preproposal. Upcoming Changes to Proposal Review by IOS Core Program

Starting in 2018, NSF’s IOS will no longer require a preliminary proposal prior to invitation to submit a full proposal. Hallelujah! Instead, later in the year, they’ll release a solicitation for full proposals. Get this, there will be NO DEADLINE. Sounds like they’ll be rewarding the nonprocrastinators? For some of us, this a welcome return to the olden ways of yor. No more wasting time with that one proposal per year system.

Source: Upcoming Changes to Proposal Review by IOS Core Programs

Let’s celebrate with the Allman Brothers…

Leave a comment

Filed under rock

Revolution: Congrats to all my co-Science Marchers and Especially Meghan Duffy (please check out her blog post on preparing her speech at the march)!

So much love to the Meghan and the other scientists who take a moment out of their busy lives to help others understand how all of our work is part of the big picture required for wise application of data to medicine and technology. Dare we think that the march influenced the decisions this week to forego the planned cut in the NIH budget?

I spoke on the main stage of the March for Science in DC on April 22. Last week, I gave the text of my talk. This post talks about how I prepared for the talk. Tomorrow, I’ll have a post with more on the day of the march. tl;dr for this post: it takes a […]

via How I prepared for my March for Science talk — Dynamic Ecology

Leave a comment

Filed under rock

You Don’t Know What You’ve Got

Every day my mind is blown by live broadcasts of astounding, weird creatures from our deepest oceans. I’ve posted a taste of this live stream video and photography extravaganza.

In the past, it’s been almost impossible to study life in the deepest oceans. Why? Because it’s freakin’ freezing (sometimes just above zero degrees centigrade (C) or 32oF by your U.S. thermometer), or boiling hot (60 to 464 °C), and the hydrostatic pressure is enormous, almost beyond comprehension. A fish, worm, or crab living down at the bottom of the sea is experiencing literally tons of pressure per square inch, like the weight of an elephant or an SUV compared to the 14.5 pounds per square inch you are probably experiencing right now. And yet, as we speak, heroic explorers are sending live stream video directly to you. And WOW! What they are seeing is beautiful and bizarre!

My colleague from the Lehigh University Department of Biological Sciences, Santiago Herrera, is the lead biologist on an expedition to the American Samoas to some of the deepest parts of the ocean, 3,000-5,000 meters, that is, about 2 miles under the sea. He’s now aboard the Okeanos Explorer, an impressive vessel equipped with high-tech lights, cameras, robot arms and scoops, and lasers that are sent to the sea floor and manipulated by the crew with precision. They broadcast live every day from their American Samoa Expedition.


Enter a caption

NOAA Ship Okeanos Explorer docked at the pier at the Port of Pago Pago in American Samoa. Significant outreach was conducted prior to commencing the expedition. Interviews were conducted with media, and ship tours were held for local elementary through college students, local partners, and government and agency representatives. Image courtesy of the NOAA Office of Ocean Exploration and Research, 2017 American Samoa.

Alien life on Our Own Plant

Just this week, the Okeanos Explorer crew sent these videos of Dr. Seuss-like creatures that you might think were discovered in outer space. What’s incredible is that these creatures’ habitat is actually the most common habitat on our planet. Santiago tells us that most of our planet consists of deep oceans (about 72%), and yet we know very little about what lives there.

Sex and Food Under the Sea

The other day, as I watched the Okeanos team zoom in on some rare sponges, sea anemones, and a type of deep water clam never-before-seen alive, Santiago explained that another extreme feature of the deep sea environment is very low fuel and nutrient availability. Most animals down there depend on a small, slow trickle of organic matter that floats down from shallow parts of the ocean. The link between food and sex holds up in these alien environments. Deep sea creatures must conserve energy and nutrients by maturing very slowly. In comparison to the willy nilly reproduction that’s going on up here, deep sea creatures engage in the energetically-expensive process of reproduction only rarely.

There are many other fascinating adaptations to the extreme deep sea environment. Cell walls and nuclear membranes of deep sea creatures are made to withstand enormous hydrostatic pressure, and therefore, if they are brought up from their deep sea habitat into lower pressures, they literally fall to bits. Many of these creatures are a deep red color, owing to high levels of hemoglobin. Hemoglobin is the thing in your red blood cells that makes them red, and the thing that transports oxygen to your various organs. Extra hemoglobin helps deep sea organisms survive in their low-oxygen environment. So, in the Okeanos Explorer videos, you will often see bright red shrimp, psychedelic ctenophores (comb jellies), and fiery-colored fish in the deepest waters. Here are some screen shots from their gorgeous website.

Kiss it Goodbye

Now that you’re amazed by and bonded to these fascinating friends, let me crush your soul. Climate change will have a devastating impact on our deep sea organisms, and this is related to the food-sex connection and the reality of trickle-down economics. The slow trickle of energy-yielding food to the lower depths has led to the evolution of animals that are now adapted to living on very little food and oxygen. They have survived and spread their traits to each generation because they have an innate tendency to grow and mature very slowly, and reproduce infrequently. Their habitat has been very stable for long periods of time, and once disturbed, they don’t appear to have innate mechanisms to make a comeback. Their rates of reproduction are too slow, and when they experience changes in the acidity, levels of oxygen, or temperature, their populations might not  recover. Climate change, global warming, whatever you want to call it, will cause these devastating changes that disturb the deep sea conditions. Scientists from Scripps Institute of Oceanography have published a study indicating that the food supply to some areas of the earth’s deep oceans will decline by up to one half by the year 2100.

It doesn’t appear that we can count on the United States to delay the onset of climate change. Think about it. Why do we need the governments to make us install solar, purchase electric vehicles, and recycle? When you are planning your own survival and that of your children and grandchildren, think of these deep sea organisms, and our native American friends at Standing Rock, and let them inspire you.

Please let me leave you with something better than a sad Joni Mitchell lyric (“You don’t know what you’ve got til it’s gone”). Keep learning, dig, dig, dig deeper than your initial shallow understanding. Acquiring knowledge is not elitist; it’s freedom and it’s fun. In the words of the B52s, There Goes a Sea Robin!

Leave a comment

Filed under New Wave

Idioteque (this is really happening)

1 Comment

Filed under Alternative

I Would Die 4 U (and my genetic contribution to future generations)

We knew that praying mantis females often cannibalize their mates after sex, and we suspected that there was some benefit to the male that would outweigh the cost, but why not just take the female out for an expensive dinner? Now we have some evidence. These  clever experiments show that cannibalized males make a greater somatic investment in their offspring leading to higher fecundity in the female. Check out their hot experimental methods for determining male investment in offspring bodies.

Males that are cannibalized after mating make a larger somatic investment in the offspring with a resulting increase in egg production.

Screen Shot 2016-06-29 at 11.09.37 AM

This post is dedicated to our beloved formerly alive One 

Leave a comment

Filed under Funk, Uncategorized